Department of Geomatics Engineering / Department of Geomatics Engineering / Department of Geomatics Engineering

Department of Geomatics Engineering / Department of Geomatics Engineering / Department of Geomatics Engineering								
Course Code C	Course Name	Teorical	Practice	Laboratory	Credits	ECTS		
MAT301 N	NUMERICAL METHODS IN ENGINEERING	3.00	0.00	0.00	3.00	4.00		
Course Detail								
Course Language	: English							
Qualification Degree	: Bachelor							
Course Type	: Compulsory							
Preconditions	: Not							
Objectives of the Course	ical prgrammin	g for these tech	niques are air	med in this				
	course							
Course Contents	 course Taylor Series. Error in numerical Analysis. Techniques of solving non-linear existenation . Solving Systems: Jacobi method, Gauss-Siedel Method. Interpolation Differentiation. Numerical Integration: Trapezoidal Rule, Simpson's rule. Numerical Numerical Solutions of BVPs. Numerical Solution of PDEs: Finite differentiation. 	on: Lagrange Interpola rical Solution of ODE	ation, Splines. I	east Square A	proximation.	Numerical		
Course Contents Recommended or Required Reading	: Taylor Series. Error in numerical Analysis. Techniques of solving non-linear ed iteration . Solving Systems: Jacobi method, Gauss-Siedel Method. Interpolation Differentiation. Numerical Integration: Trapezoidal Rule, Simpson's rule. Numer method. Numerical Solutions of BVPs. Numerical Solution of PDEs: Finite differentiation.	n: Lagrange Interpola rical Solution of ODE erence Methods.	ation, Splines. I s: Explicit Eule	∟east Square Aj r, Implicit Euler,	proximation. Midpoint Rule	Numerical e, Runge -Ku		
Recommended or Required Reading	 Taylor Series. Error in numerical Analysis. Techniques of solving non-linear existence in the solving Systems: Jacobi method, Gauss-Siedel Method. Interpolation Differentiation. Numerical Integration: Trapezoidal Rule, Simpson's rule. Numericad. Numerical Solutions of BVPs. Numerical Solution of PDEs: Finite differentiation. 1) Numerical Methods Using MATLAB: International Edition, 4/E (John H. Mathematical Solutions) 	n: Lagrange Interpola rical Solution of ODE erence Methods.	ation, Splines. I s: Explicit Eule	∟east Square Aj r, Implicit Euler,	proximation. Midpoint Rule	Numerical e, Runge -Ku		
Recommended or Required Reading Planned Learning Activities Teaching Methods Recommended Optional	 Taylor Series. Error in numerical Analysis. Techniques of solving non-linear editeration. Solving Systems: Jacobi method, Gauss-Siedel Method. Interpolation Differentiation. Numerical Integration: Trapezoidal Rule, Simpson's rule. Numerical Numerical Solutions of BVPs. Numerical Solution of PDEs: Finite differentiation. 1) Numerical Methods Using MATLAB: International Edition, 4/E (John H. Mats. Azarm, B. Balachandran, J. H. Duncan, K. E. Herold, G.C. Walsh) 	n: Lagrange Interpola rical Solution of ODE erence Methods.	ation, Splines. I s: Explicit Eule	∟east Square Aj r, Implicit Euler,	proximation. Midpoint Rule	Numerical e, Runge -Ku		
Recommended or Required Reading Planned Learning Activities Teaching Methods Recommended Optional Programme Components	 Taylor Series. Error in numerical Analysis. Techniques of solving non-linear exiteration. Solving Systems: Jacobi method, Gauss-Siedel Method. Interpolation Differentiation. Numerical Integration: Trapezoidal Rule, Simpson's rule. Numer method. Numerical Solutions of BVPs. Numerical Solution of PDEs: Finite differentiation. Numerical Methods Using MATLAB: International Edition, 4/E (John H. Mat S.Azarm, B. Balachandran, J. H. Duncan, K. E. Herold, G.C. Walsh) and : Student-centered, homework and computer-aided, face to face education. 	n: Lagrange Interpola rical Solution of ODE erence Methods.	ation, Splines. I s: Explicit Eule	∟east Square Aj r, Implicit Euler,	proximation. Midpoint Rule	Numerical e, Runge -Ku		
Recommended or Required Reading Planned Learning Activities Teaching Methods Recommended Optional Programme Components Instructors	 Taylor Series. Error in numerical Analysis. Techniques of solving non-linear exiteration . Solving Systems: Jacobi method, Gauss-Siedel Method. Interpolation Differentiation. Numerical Integration: Trapezoidal Rule, Simpson's rule. Numer method. Numerical Solutions of BVPs. Numerical Solution of PDEs: Finite differentiation. Numerical Methods Using MATLAB: International Edition, 4/E (John H. Mat S.Azarm, B. Balachandran, J. H. Duncan, K. E. Herold, G.C. Walsh) and : Student-centered, homework and computer-aided, face to face education. To know the basics of programming. 	n: Lagrange Interpola rical Solution of ODE erence Methods.	ation, Splines. I s: Explicit Eule	∟east Square Aj r, Implicit Euler,	proximation. Midpoint Rule	Numerical e, Runge -Ku		
Recommended or Required Reading Planned Learning Activities	 : Taylor Series. Error in numerical Analysis. Techniques of solving non-linear exiteration . Solving Systems: Jacobi method, Gauss-Siedel Method. Interpolation Differentiation. Numerical Integration: Trapezoidal Rule, Simpson's rule. Numer method. Numerical Solutions of BVPs. Numerical Solution of PDEs: Finite differentiation. Numerical Methods Using MATLAB: International Edition, 4/E (John H. Mat S.Azarm, B. Balachandran, J. H. Duncan, K. E. Herold, G.C. Walsh) and : Student-centered, homework and computer-aided, face to face education. : To know the basics of programming. : Assoc. Prof. Dr. Sıla Övgü Korkut Uysal 	n: Lagrange Interpola rical Solution of ODE erence Methods.	ation, Splines. I s: Explicit Eule	∟east Square Aj r, Implicit Euler,	proximation. Midpoint Rule	Numerical e, Runge -Ki		

1 will be able to discuss the usage of the numerical methods, define the error, will be able to explain the root-finding techniques, and create MATLAB programs. Build simple loops using MATLAB

2 will be able to list the numerical methods of solving systems and to distinguish the differences

3 will be able to construct a polynomial with some experimental data and will be able to create the nonlinear function by considering minimum error.

4 will be able to compute integral and differentiation by using any numerical analysis techniques.

5 will be able to identify and categorize the numerical analysis techniques for ordinary differential equations and create MATLAB programs of these methods.

Preconditions					
Course Code	Course Name	Teorical	Practice	Laboratory Credits	ECTS

Weekly C	ontents
----------	---------

						Course Learning
	Teorical	Practice	Laboratory	Preparation Info	Teaching Methods	Outcomes
1.Week	*Introduction to Numerical Methods Preliminaries A general look at the concept of "Error"				*Face to face and computer aided education	
2.Week	*Introduction to MATLAB program Important Loops The concepts of Input & Output				*Computer aided and interactive education	
3.Week	*The methods of root finding: 1) Bisection method 2) Secant Method 3) Newton-Raphson method				*Face to face- interactive education	
4.Week	*Algorithms of the root finding methods in MATLAB; tools of MATLAB for froot finding				*Computer aided interactive education	
5.Week	*Numerical methods for systems: 1) Gauss-Seidel 2) Newton's method for systems				*Computer aided and interactive education	
6.Week	*Discussion of approximate solutions of systems by using MATLAB					
7.Week	*Introduction to Interpolation Creating a polynomial using data 1) Lagrange Interpolation method 2) Newton-divided difference method				*Face to face and iinteractive education	
8.Week	*Midterm Exam					
9.Week	*Continuation to Interpolation 3) The least square approximation(Regression) 3.1) Linear equation 3.2) non-linear equation				*Face to face and interactive education	
10.Week	*Interpolation via MATLAB: codding- using MATLAB tools				*Computer aided, interactive and face to face education	
11.Week	*Numerical Differentiation 1) Forward difference method 2) Backward Difference method 3) Central difference method 4) construction of a method					
12.Week	*Numerical Integration 1) Trapezoidal rule 2) Midpoint rule 3)Gauss- Quadrature method				*Face to face and interactive education	
13.Week	*Numerical Solutions of Ordinary Differential Equations 1) Explicit Euler method 2) Implicit Euler method 3) Heun Method 4) 4th order Runge-Kutta method				*face to face and interactive education	
14.Week	*Numerical solutions of Ordinary Differential Equations- Boundary Value Problems				*face to face and interactive education	

Assesment Methods % 1 Final : 50.000 2 Midterms : 50.000

Activities	Count	Time(Hour)	Sum of Workload
Vize / Midterms	1	2.00	2.00
Final / Final	1	2.00	2.00
Derse Katılım / Attending lectures	14	3.00	42.00
Ders Öncesi Biresysel Çalışma / Individual study before lecture	14	1.00	14.00
Ders Sonrası Biresysel Çalışma / Individual study after lecture	14	3.00	42.00
Ara Sınav Hazırlık / Preparation for midterm	1	10.00	10.00
Final Sınavı Hazırlık / Preparation for final	1	10.00	10.00
Bütünleme / Make-up	1	2.00	2.00
		Tota	I: 124.00
	Sum of Workload / 30 (Hour): 4		
	ECTS: 4.00		

	P.O. 1	P.O. 2	P.O. 3	P.O. 4	P.O. 5	P.O. 6	P.O. 7	P.O. 8	P.O. 9	P.O. 10	P.O. 11
L.O. 1	0	0	0	0	0	0	0	0	0	0	0
L.O. 2	0	0	0	0	0	0	0	0	0	0	0
L.O. 3	0	0	0	0	0	0	0	0	0	0	0
L.O. 4	0	0	0	0	0	0	0	0	0	0	0
L.O. 5	0	0	0	0	0	0	0	0	0	0	0