Department of Geomatics Engineering / Department of Geomatics Engineering / Department of Geomatics Engineering								
Course Code	Course Name	Teorical	Practice	Laboratory	Credits	ECTS		
GE411	NTRODUCTION TO KALMAN FILTER	3.00	0.00	0.00	4.00	4.00		
Course Detail								
Course Language	: English							
Qualification Degree	: Bachelor							
Course Type	: Optional							
Preconditions	: Not							
Objectives of the Course	: The course aims to present the Kalman filtering used for state estimation in dynami	ic systems to the	student.					
Course Contents	: Linear system theory, basic concepts of probability, parameter estimation, error pro	opagation law, di	screte-time Ka	lman filtering, g	eodetic applic	ations		
Recommended or Require Reading	d : N/A							
Planned Learning Activities Teaching Methods	s and : Lectures with discussions							
Recommended Optional Programme Components	: Advanced level mathematics, probability and statistics knowledge							
Instructors	: Dr. Öğr. Üyesi Mehmet Güven Koçak							
Instructor's Assistants	: N/A							
Presentation Of Course	: Lecture with theoretical background and basic programming applications							
En Son Güncelleme Tarihi:	: 4/16/2024 2:48:05 PM							
Course Outcomes								
Upon the completion of this course	a student :							
1 Identify the terminology used for u	nivariate and multivariate normal distribution terminology.							

2 Explain the concept of recursive parameter estimation.

3 Define Kalman filtering steps and interpret the relevant equations

4 Build process and measurement noise matrices

5 Apply Kalman filtering to a basic navigation problem.

Preconditions					
Course Code	Course Name	Teorical	Practice	Laboratory Credi	ts ECTS

Weekly Contents

	Teorical	Practice	Laboratory	Preparation Info	Teaching Methods	Course Learning Outcomes
1.Week	*Introduction					
2.Week	*Probability and statistical concepts					
3.Week	*Probability and statistical concepts					
4.Week	*Parameter estimation					
5.Week	*Parameter estimation					
6.Week	*Error propogation					
7.Week	*Sequential Estimation					
8.Week	*Exam week					
9.Week	*Deriving Kalman filtering equations					
10.Week	*Deriving Kalman filtering equations					
11.Week	*KF applications					
12.Week	*KF applications					
13.Week	*KF applications					
14.Week	*KF applications					

Assesment Methods %	
1 Midterms : 30.000	
2 Assignment : 30.000	
3 Final : 40.000	

ECTS Workload

Activities	Count	Time(Hour)	Sum of Workload
Derse Katılım / Attending lectures	14	3.00	42.00
Ders Öncesi Biresysel Çalışma / Individual study before lecture	14	1.00	14.00
Ders Sonrası Biresysel Çalışma / Individual study after lecture	14	1.00	14.00
Ara Sınav Hazırlık / Preparation for midterm	1	8.00	8.00
Final Sınavı Hazırlık / Preparation for final	1	8.00	8.00
Ödev / Assignment	2	16.00	32.00
Vize / Midterms	1	1.00	1.00
Final / Final	1	1.00	1.00
		Total	: 120.00
	Sum	of Workload / 30 (Hour)	: 4

ECTS: 4.00

Program And OutcomeRelation

	P.O. 1	P.O. 2	P.O. 3	P.O. 4	P.O. 5	P.O. 6	P.O. 7	P.O. 8	P.O. 9	P.O. 10	P.O. 11
L.O. 1	5	0	0	5	0	0	0	0	0	0	0
L.O. 2	5	0	0	5	0	0	0	0	0	0	0
L.O. 3	5	0	0	0	0	0	0	0	0	0	0
L.O. 4	5	0	0	5	0	0	0	0	0	0	0
L.O. 5	5	0	0	5	0	0	0	0	0	0	0